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ABSTRACT

It is shown analytically and graphically that when parameterized on/off switches are triggered at discrete time
levels by a threshold condition in a numerical model, the model solution is not continuously dependent on the
initial state. Consequently, the response function and costfunction contain small zigzag discontinuities; their
gradients contain delta functions and thus are not good approximations of the original continuous gradients. The
problem is caused by the traditional time discretization and cannot be solved by the conventional treatment of
on/off switches. To solve the problem, the traditional time discretization is modified with the switch time
determined by interpolation as a continuous function of the initial state. With this modification, the response
function and costfunction become continuous in the space of the initial state and their gradients can be accurately
computed by the generalized adjoint.

1. Introduction

The classic adjoint formulations were recently gen-
eralized by Xu (1996a,b; 1997) for physical processes
with parameterized discontinuities. In these previous
studies, time continuous models were used to illustrate
how the variations of the switchs cause delta functions
in the tangent linear and adjoint equations and how these
delta functions impact the tangent linear and adjoint
solutions during the integrations of their respective
equations under various types of threshold conditions.
However, it is not clear how the generalized adjoint
formulations obtained for time continuous models
should be applied to time discrete numerical models. In
a numerical model, on/off switches are triggered tra-
ditionally at discrete time levels by a threshold condi-
tion. In this case, as will be seen in this paper, the switch
times and thus the discrete solution are not continuously
dependent on the initial state. Consequently, the re-
sponse function and costfunction contain small zigzag
discontinuities and their gradients contain delta func-
tions. These deteriorated properties cause difficulties in
the tangent linearization and adjoint minimization. The
related problems will be examined in this paper.

The paper is organized as follows. The time contin-
uous model of Xu (1996a, henceforth referred to as
X96a) is reviewed in the following section, which pro-
vides benchmarks for the discrete results in the later
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sections. Problems caused by the traditional time dis-
cretization are illustrated in section 3. Section 4 derives
discrete tangent linear and adjoint equations for the tra-
ditionally discretized model equation and the resulting
equations are used to analyze the problem in the con-
ventional treatment of on/off switches. Section 5 shows
how the problem can be solved by a modified time
discretization scheme in which the switch time is de-
termined, by interpolation, as a continuous function of
the initial state. The principle results are summarized
with conclusions in section 6.

2. Review of time continuous model

a. Model equation and generalized adjoint

The time evolution of the concerned variable x is
described by the following equation:

d x 5 F 1 GH(x 2 x ),t c

x 5 x at t 5 0, (2.1)0

where G is the source term due to the parameterized
process, F is the source term due to other processes,
H( ) is the Heaviside unit-step function (Courant and
Hilbert 1962, p. 622), and xc is the threshold value for
the parameterized process. As shown in X96a, H(x 2
xc) can be replaced by H(t 2 t) for an on switch, or
by H(t 2 t) for an off switch, where t denotes the
switch time. In general, F and G are functions of (x,
t). For the simple examples considered in this paper,
G and F are assumed to be constant and satisfying F
. 2G . 0. In this case, the solution of (2.1) for t .
0 is given by
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FIG. 1. Response function R (upper panel) and its gradient ]R/]x0

(lower panel). The continuous and discretized results are shown by
the thick and thin lines, respectively. The spikes (delta functions) in
the gradient are shown by thin arrows at the equally spaced discrete
points ck [ xc 2 kDtF (k 5 0, 1, · · ·, N 2 1) on the x0 axis (where
xc 5 c0 and xa 5 cN).

x 5 x0 1 Ft 1 [(t 2 t)H(t 2 t) 1 tH(2t)]G,
(2.2)

where t 5 (xc 2 x0)/F. Here, the initial state is not
restricted by x0 , xc and thus t can be negative, so (2.2)
is more general than (3.4) of X96a. When the initial
state is within (or outside) the range of xc $ x0 $ xc 2
FT, the solution in (2.2) has a single on switch (or has
no switch) in [0, T].

As in (3.7)–(3.8) of X96a, corresponding to (2.1) the
generalized tangent linear and adjoint operators have
the following forms:

L 5 d 2 H9(t 2 t)G/F, (2.3a)t

L* 5 2d 2 H9(t 2 t)G/F, (2.3b)t

where H9( ) is the unit delta function—the derivative of
H( ). In association with the two operators in (2.3a,b),
the left and right continuities are specified for the tan-
gent linear variable dx and adjoint variable dx*, re-
spectively. When x0 , xc and thus t . 0, the tangent
linear equation Ldx 5 0 can be integrated as in X96a,
and the solution is dx 5 dx0 1 dx0H(t 2 t)G/F. When
x0 . xc (t , 0), the tangent linear operator reduces to
L 5 dt and the tangent linear solution is a trivial one:
dx 5 dx0. Combining these two situations, the tangent
linear solution can be written into the following unified
form

dx 5 dx0 1 dx0[H(t 2 t) 2 H(2t)]G/F. (2.4)

This tangent linear solution can be verified by the linear
perturbation of the solution in (2.2).

b. Response function and costfunction

For the concerned sensitivity problem, we may con-
sider the following simple form of response function:

T

R 5 r dt 5 x(t ), (2.5)E i

0

where r is a function of (x, t) and chosen to be r 5
xH9(t 2 ti) with 0 , ti # T. Substituting (2.2) into (2.5)
gives R 5 x(ti) 5 x0 1 FT 1 [(x0 1 Fti 2 xc)H(x0 1
Fti 2 xc) 2 (x0 2 xc)H(x0 2 xc)]G/F. The sensitivity of
R with respect to the initial state is measured by the
gradient of R; that is,

]R/]x0 5 1 1 [H(x0 1 Fti 2 xc) 2 H(x0 2 xc)]G/F.
(2.6)

As in (5.6)–(5.8) of X96a, the associated adjoint prob-
lem can be formulated by L*dx* 5 ]r/]x 5 H9(t 2 ti)
and ]x*(T) 5 0 or, equivalently,

L*dx* 5 0

dx*(t ) 5 1, (2.7)i

where L* is given by (2.3b). When x0 , xc (t . 0), the
adjoint solution of (2.7) is dx*(0) 5 1 1 H(x0 1 Fti 2

xc)G/F, which is the same as that of (5.8) in X96a. When
x0 . xc (t , 0), the adjoint operator reduces to L* 5
2dt and the adjoint solution is a trivial one: dx*(0) 5
1. Combining these two situations, we have dx*(0) 5
1 1 [H(x0 1 Fti 2 xc) 2 H(x0 2 xc)]G/F, which is
exactly the same as the sensitivity measure in (2.6). This
verifies that the adjoint solution of (2.7) gives the sen-
sitivity measure in (2.6). The response function R and
gradient ]R/]x0 are sketched by the thick curves (for ti

5 T) in Fig. 1.
For the concerned variational data assimilation prob-

lem, the costfunction is defined by
T

2J 5 D dt, (2.8)E
0

where D 5 x 2 xob, x is the solution of (2.1), and xob,
the observed value of x for the data assimilation period
[0, T]. Substituting (2.4) into dJ 5 2 (Ddx) dt yieldsT∫0

the following gradient formulation:
T T

]J/]x 5 2 D dt 1 2(G/F)[1 2 H(2t)] D dt.0 E E
0 t

(2.9)

This formulation reduces to (3.6) of X96a when x0 #
xc (t $ 0). One can verify that the gradient in (2.9) can
be obtained by backward integrating the following ad-
joint system
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FIG. 2. As in Fig. 1 but for costfunction J and its gradient ]J/]x0.
The observed initial state is denoted by xoi on the x0 axis.

FIG. 3. Reference solution x (solid) with an initial state immediately
below point c1 on the x0 axis, perturbed solution x9 (dashed) with an
initial state immediately above point c1 on the x0 axis, and observed
true state xob (thick solid). As shown, when x0 is perturbed to pass
point c1, the switch time jumps backward from time level 2 to 1 and
the solution jumps by GDt at and after the second time level.

L*dx* 5 2D,

dx*(T) 5 0, (2.10)

where L* is given by (2.3b). By substituting (2.2) into
(2.8) and (2.9), the costfunction and gradient can be
expressed in terms of x0 [see (6.7) of X96a]. The results
are sketched by the thick curves in Fig. 2. The major
features of these thick curves have been previously de-
scribed and interpreted in X96a. These results will be
called ‘‘original’’ or ‘‘time continuous’’ as they are used
as benchmarks for the discrete results in the later sec-
tions.

3. Time discretization and related problems
a. Discrete model and solution

When time is discretized, an on switch is traditionally
assigned to the nearest time level after the threshold
condition is exceeded. With this tradition, (2.1) yields
the following finite-difference equations

xn 5 xn21 1 FDt 1 GDtH(xn21 2 xc)
for n 5 1, 2, · · · , N, (3.1a)

where the subscript n indicates the value at the nth time
level, N is total number of time steps with Dt [ T/N,
and the Heaviside unit-step function H( ) should be left
(or right) continuous at the jump point if the threshold
condition for the on switch is x . xc (or x $ xc). Ex-
plicitly, (3.1a) means the following steps of operation:

x 5 x 1 FDtn n21

for n 5 1, 2, · · · , m,

x 5 x 1 (F 1 G)Dtn n21

for n 5 m 1 1, m 1 2, · · · , N, (3.1b)

where m denotes the time level of switch and is deter-
mined by xm $ xc . xm21, corresponding to the threshold
condition x $ xc for the on switch. [If x . xc is assumed
for the on switch threshold condition, then m should be
determined by xm . xc $ xm21.]

Forward integrating (3.1a) yields the following dis-
crete solution:

n21

x 5 x 1 nFDt 1 GDt H(x 2 x )On 0 k c
k50

for n 5 1, 2, · · · , N. (3.2a)

Let ck [ xc 2 kDtF (k 5 0, 1, · · · , N 2 1) denote the
N equally spaced discrete points on the x0 axis. When
x0 5 ck, (3.2a) gives xk 5 xc, which means that t 5 kDt
and the solution reaches the threshold value exactly at
the kth time level (see Fig. 3). Substituting xk 2 xc 5
x0 1 kDtF 2 xc 5 x0 2 ck into (3.2a) gives

n21

x 5 x 1 nFDt 1 GDt H(x 2 c )On 0 0 k
k50

for n 5 1, 2, · · · , N. (3.2b)

When x0 , cn21, (3.2b) reduces to xn 5 x0 1 nFDt.
When x0 increases and passes point cn21 and thus xn21

passes the threshold value xc, the switch time jumps
backward from time level n to n 2 1 and xn jumps by
GDt according to (3.1). When x0 further increases and
passes point cn22 and thus xn22 passes xc, the switch time
jumps backward from time level n 2 1 to n 2 2, and
xn21 and xn jump by GDt (see Fig. 3). As x0 passes all
the points ck (from k 5 n 2 1 to k 5 0), xn undergoes
a sequence of jumps as shown by the summation terms
in (3.2b).
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b. Response function and costfunction

By choosing ti 5 iDt in (2.5), we have R 5 x(iDt) 5
xi, so the response function is given by the discrete
solution in (3.2b) at the time level of n 5 i. The gradient
of the response function can be derived directly from
](3.2b)/]x0 and the result is

i21

]R /]x 5 ]x /]x 5 1 1 GDt H9(x 2 c ). (3.3)O0 i 0 0 k
k50

The response function and gradient are sketched by the
thin curves in Fig. 1.

The costfunction in (2.8) can be discretized into the
following form:

N

2J 5 D Dt, (3.4)O n
n50

where Dn 5 xn 2 xob(nDt). Substituting (3.2b) into
](3.4)/]x0 gives

]J/]x 5 2D Dt 1 2Dt0 0

N n21

3 D 1 1 GDt H9(x 2 c ) . (3.5)O On 0 k5 6[ ]n51 k50

The results in (3.4) and (3.5) are sketched by the thin
curves in Fig. 2.

The above results indicate that when the solution
is computed by using the discrete model (3.1), xn is
not continuously dependent on the initial state x0, so
the computed response function and costfunction con-
tain discontinuities and their gradients contain delta
functions. As shown in Fig. 3, when x0 moves between
the discrete points ck 5 xc 2 kDtF (k 5 0, 1, · · · , N
2 1), the switch time does not change. Thus, as shown
by (3.2)–(3.3) and thin curves in Fig. 1, the response
function is a linear function of x0 and its gradient is
constant between the discrete points ck. As shown by
(3.4)–(3.5) and thin curves in Fig. 2, the costfunction
is a parabola and its gradient is a linear function of
x0 between the discrete points ck. However, when the
initial value passes through one of the discrete points
ck, the switch time jumps by Dt, the response function
and costfunction become discontinuous, and their gra-
dients have delta functions (or, say, spikes as shown
by the vertical arrows in Figs. 1 and 2). When Dt →
0, the discrete response function and costfunction
converge to their respective time-continuous coun-
terparts in (2.5) and (2.8), but the discrete gradients
in (3.3) and (3.5) are only weakly convergent (Cour-
ant and Hilbert 1962, pp. 777–778).

4. Discrete adjoint and conventional treatment

a. Discrete adjoint

The tangent linear equation for (3.1) has the following
discrete form:

dxn 5 dxn21 1 GDtH9(xn21 2 xc)dxn21

for n 5 1, 2, · · · , N. (4.1)

Forward integrating (4.1) yields the following discrete
tangent linear solution:

n21

dx 5 dx 1 1 GDt H9(x 2 c ) , (4.2)On 0 0 k[ ]k50

where

x 2 x 5 x 2 c andk c 0 k

n21 n21

[1 1 GDtH9(x 2 c )] 5 1 1 GDt H9(x 2 c )P O0 k 0 k[ ]k50 k50

are used. This tangent linear solution can be verified by
directly perturbing the solution in (3.2b).

Similar to its time-continuous counterpart in (2.7),
the gradient of the response function R 5 xi can be given
by the solution of the following discrete adjoint prob-
lem:

dx* 5 1i

dx* 5 dx* 1 GDtH9(x 2 x )dx*n21 n n21 c n

for n 5 i, · · · , 2, 1. (4.3)

Using the fact that xn21 2 xc 5 x0 2 cn21 [see (3.2a)–
(3.2b)], one can verify that the adjoint solution ob-dx*0
tained by backward integrating (4.3) gives the gradient
in (3.3).

Similar to its time-continuous counterpart in (2.10),
the gradient of the costfunction in (3.4) can be given
by the solution of the following discrete adjoint prob-
lem:

dx* 5 0N11

dx* 5 dx* 1 GDtH9(x 2 x )dx* 1 2DtDn21 n n21 c n n21

for n 5 N 1 1, N, · · · , 2, 1. (4.4)

One can verify that the adjoint solution obtaineddx*0
from (4.4) gives the gradient in (3.5).

b. Conventional treatment

The discrete tangent linear and adjoint operators in
(4.1) and (4.3)–(4.4) contain delta functions. When
these delta functions are ignored by the conventional
treatment of on/off switches (see case 1 in section 3a
of X96a), the tangent linear equation (4.1) reduces to
dxn 5 dxn21 and the adjoint equations (4.3) and (4.4)
reduce to 5 and 5 1 2DtDn, re-dx* dx* dx* dx*n21 n n21 n

spectively. In this case, the response function gradient
reduces to ]R/]x0 5 1, and the costfunction gradient
reduces to

N

2 D Dt.O n
n50
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FIG. 4. As in Fig. 3 but the switch time is calculated by linear
interpolation; thus, the switch time and the discrete solution vary
continuously as x0 is perturbed to pass point c1.

The reduced gradients are clearly different from the
original gradients in (3.3) and (3.5). When Dt → 0, the
reduced gradients do not converge to their respective
time continuous counterparts in (2.6) and (2.9). In par-
ticular, as we can see from Figs. 1 and 2, the thin gra-
dient curves (with the spikes eliminated) do not con-
verge to their respective thick gradient curves. Thus,
with the conventional treatment, the response function
and costfunction are modified into continuous functions
(not shown), but these modified functions are not valid
approximations of the original response function and
costfunction.

5. Modified discretization and generalized adjoint

a. Modified discretization

When time is discretized and the switch time is de-
termined on discrete time levels, the response function
and costfunction do not continuously depend on the
initial state and thus cause problems in their gradient
computations. The discontinuities in the response func-
tion and costfunction can be eliminated if the switch
time is calculated by linear interpolation (see Fig. 4).
In this case, (2.1) is discretized into the following for-
ward model:

x 5 x 1 FDtn n21

for n 5 1, 2, · · · , m 2 1

x 5 x 1 FDt 1 G(Dt 2 Dt)n n21

for n 5 m

x 5 x 1 (F 1 G)Dtn n21

for n 5 m 1 1, m 1 2, · · · , N, (5.1)

where m is determined by xm $ xc . xm21 as in (3.1),
and Dt is the intermediate time step determined by xc

5 xm21 1 FDt through linear interpolation. Forward
integrating (5.1) yields the following discrete solution:

xn 5 x0 1 FnDt 1 G[(nDt 2 t)H(nDt 2 t) 2 tH(2t)]
for n 5 1, 2, · · · , N, (5.2)

where t 5 (xc 2 x0)/F 5 (m 2 1)Dt 1 Dt and xm21 5
x0 1 F(m 2 1)Dt are used. This solution has the same
value as the analytical solution (2.2) at each discrete
time level. Here, since t is a linear function of x0, the
discrete solution in (5.2) is a continuous function of the
initial state.

b. Response function and costfunction

The discrete response function is given by the discrete
solution in (5.2) at the time level of n 5 i; that is, R 5
x(iDt) 5 xi. The gradient of the response function can
be derived from ](5.2)/]x0; that is,

]R/]x0 5 ]xi/]x0

5 1 1 [H(x0 1 FiDt 2 xc) 2 H(x0 2 xc)]G/F.
(5.3)

This gradient is the same as the analytical result in (2.6)
for R 5 x(iDt) 5 xi.

Since the discrete solution in (5.2) is a continuous
function of x0, the associated costfunction in (3.4) is
also a continuous function of x0. Substituting (5.2) into
](3.4)/]x0 gives the gradient formulation

N

]J/]x 5 2Dt D 1 2Dt(G/F)O0 n
n50

N

3 [1 2 H(x 2 x )] D , (5.4)O0 c n
n5m

where m is determined as in (5.1). As shown in (5.3)
and (5.4), with the modified discretization, the response
function and costfunction become continuous, and their
gradients contains no delta function of x0. When Dt →
0, the gradients in (5.3) and (5.4) converge to their time-
continuous counterparts in (2.6) and (2.9).

c. Tangent linear and adjoint operators

Corresponding to (5.1), the discrete tangent linear
equation is

dx 5 dxn n21

for n 5 1, 2, · · · , N, but n ± m

dx 5 dx 1 (G/F)dxn n21 n21

for n 5 m, (5.5)

where dt 5 2dxm21/F is used. When x0 $ xc and thus
t # 0, m # 0 and (5.5) contains only the first expression.
Integrating (5.5) forward yields the following discrete
tangent linear solution:

dxn 5 dx0 1 [H(x0 1 FnDt 2 xc)
2 H(x0 2 xc)]dx0G/F. (5.6)
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This tangent linear solution can be verified by directly
perturbing the solution in (5.2).

The gradient of the response function R 5 xi can be
given by the solution of the following discrete adjoint
problem:

dx* 5 1i

dx* 5 dx*n21 n

for n 5 i, · · · , 2, 1, but n ± m

dx* 5 dx* 1 (G/F)dx*n21 n n

for n 5 m. (5.7)

The adjoint solution obtained from (5.7) gives thedx*0
same gradient as in (5.3).

The gradient of the costfunction (3.4) can be given
by the solution of the following discrete adjoint prob-
lem:

dx* 5 0N11

dx* 5 dx* 1 2DtDn21 n n21

for n 5 N 1 1, N, · · · , 2, 1, but n ± m

dx* 5 dx* 1 (G/F)dx* 1 2DtDn21 n n n21

for n 5 m. (5.8)

One can verify that the adjoint solution obtaineddx*0
from (5.8) gives the same gradient as in (5.4).

With the modified discretization, the solution in (5.2)
is continuously dependent on the initial state x0. When
Dt → 0, this discrete solution converges to the original
solution in (2.2), the discretized tangent linear operator
in (5.5) and associated adjoint operator in (5.7) or (5.8)
converge to their respective time continuous counter-
parts in (2.3a) and (2.3b). The adjoint solution of (5.7)
[or (5.8)] gives the gradient in (5.3) [or (5.4)], and this
gradient converges to the original gradient in (2.6) [or
(2.9)] as Dt → 0.

6. Conclusions

When a numerical model contains discontinuities
caused by parameterized on/off switches and is in-
tegrated numerically on discretized time levels, an on
switch (or off switch) is traditionally assigned to the
nearest time level after the threshold condition is (or
is not) exceeded. This traditional time discretization
makes the switch time and model solution not con-
tinuously dependent on the initial state. Consequently,
the response function and costfunction contain small
zigzag discontinuities and their gradients contain del-
ta functions. The discontinuities in the response func-
tion imply spikes (delta functions) in the sensitivity
measure, while the discontinuities in the costfunction
manifest small zigzag barriers to the iterative pro-
cedures of global minimization. The related problems

are examined analytically with graphical illustrations.
The principle results can be summarized as follows:

R Generalized tangent linear and adjoint models can be
derived for a traditionally discretized model [see (4.1)
and (4.3)–(4.4)]. The derived adjoint solutions contain
delta functions, just as the discrete gradients do, so
they are not good approximations of the original an-
alytical gradients.

R The problem caused by the traditional discretization
cannot be solved by the conventional treatment of
on/off switches. By ignoring the switch time pertur-
bation, the conventional treatment virtually ignores
the delta functions in the gradients. Thus, although
the conventionally computed gradients converge as Dt
→ 0, they do not converge to the original analytical
gradients.

R The problem can be solved if the switch time is de-
termined, by interpolation, as a continuous function
of the initial state. With this modified discretization,
the generalized tangent linear and adjoint models con-
verge to their original time continuous counterparts
as Dt → 0.

When a parameterization scheme is designed for
finite time steps, there is no continuous counterpart
for the parameterized process, but the problem caused
by the traditional time discretization remains essen-
tially the same as illustrated in this paper. Since the
problem is intrinsic to the traditional discretization
(independent of the adjoint or any other method used
for the gradient computation), we have either to mod-
ify the traditional discretization or to tolerate zigzag
discontinuities in the response function or costfunc-
tion. In principle, a modification with time interpo-
lation can be done even if the parameterization
scheme is designed for finite time steps (because the
interpolated time steps are still finite). The modified
discretization not only solves the problem illustrated
in this paper but also eliminates the on–off oscilla-
tions caused by the traditional discretization around
a marginal state (see Fig. 4 of X96a).

Tangent linearization and adjoint are accurate for in-
finitesimal perturbations, but their practical applications
consider finite perturbations with approximations. If the
perturbation is finite and sufficiently larger than the
change of the solution caused by one step jump of the
switch time (that is, | 2 x0| k FDt in Fig. 3), then ax90
‘‘nonlocal’’ (area-averaged) gradient may be considered
for the coarse-grain geometry of the response function
(or costfunction). Since zigzag discontinuities are
smoothed in coarse-grain geometry, the problem caused
by the traditional discretization may be solved without
modifying the discretization scheme (but with reduced
accuracy). Thus, the proposed modification in this paper
may not be the only approach in solving the problem
caused by the traditional discretization. Alternate ap-
proaches will be examined in follow-up papers.
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